NORM - Needs Oriented framework for producing Requirements decision Material

Nina D. Fogelström, Dr. Tony Gorschek, Dr. Mikael Svahnberg

Department of Systems and Software Engineering,
Blekinge Institute of Technology
Sweden

ndz@bth.se
tony.gorschek@bth.se
Mikael.Svahnberg@bth.se
How much requirements analysis and specification is enough for smart pre-project decisions?

• **Market-driven product development**
 – Development organization has financial responsibility
 – Large amount of initial requirements
 – Only a fraction of initial requirements make it in an actual release

• **Questions**
 – How much effort can we allow us to invest in pre-project decisions?
 – Which information should be available prior to each decision?
 – How detailed information should be available?
 – How little information can we get away with?
How much requirements analysis and specification is enough for smart pre-project decisions?

- **NORM provides:**
 - A framework for specifying appropriate decision material (ADM) for pre-project decisions
 - A possibility to define reasonable effort for requirements analysis in pre-project stages

- **How?**
 - (1) Defines what is minimum necessary information in order to take a decision
 - (2) Identifies what is minimum effort of producing this info
 - (3) Localizes where the needs cannot be satisfied by current process
How NORM was created?

• **NORM research and definition steps:**
 - Based on a method of technology transfer between academia and industry developed in research group of BESQ, BTH.
 - The method is well tested and used in number of research projects at BESQ which involve industry partners.

How NORM works? – a general overview

• NORM goals
 – (1) Define what is minimum necessary information in order to take a decision: **Steps 1-4**
 – (2) Identify what is minimum effort of producing this info: **Step 4**
 – (3) Localizes where the needs can not be satisfied by current process and find solution: **Step 4**

• NORM principles
 – One size does not fit all: a customized solution based on the needs of specific company
 – Involvement and active usage of the expert knowledge of practitioners
NORM steps explained: Steps 2-3

Step 2: Specify Decision Point Characteristics

<table>
<thead>
<tr>
<th>2.1 Decision Purpose</th>
<th>2.2 Decision Criteria</th>
<th>2.3 Constraints</th>
</tr>
</thead>
</table>
| Decide which of the candidate requirements are interesting enough to consider for further analysis | - Alignment with product strategy
- Expected benefit of a requirement (value vs. cost) | - Max-Effort: 10% of available yearly budget for pre-project activities
- **Requirements Volume:** 150-200 Requirements in 6 months
- **Req. Specification state:** Mostly feature level |

Sources: Decision-Makers and Decision Material Providers

Focus on:
- Decision Purpose
- Decision Criteria
- Constraints

Step 3: Define ADM Components

<table>
<thead>
<tr>
<th>Component type 1: Requirement Description</th>
<th>Component type 2: Requirements associated items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: The system should provide real-time performance monitoring functionality</td>
<td>Example: Value analysis result; Cost evaluation result; Analysis of requirements alignment with product strategy</td>
</tr>
</tbody>
</table>

ADM component examples:
- Requirements description
- Value analysis
- Implementation cost
NORM steps explained: Step 4

Purpose: Decide level of detail, accuracy and development effort of ADM component

Focus: On usage of pre-defined alternatives for information detail and accuracy

<table>
<thead>
<tr>
<th>Cost estimation alternative</th>
<th>Associated technical analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt1: Classification between High, Average and Low cost.</td>
<td>High level feasibility analysis</td>
</tr>
<tr>
<td>Alt2: Intervals defined in person-hours. Example: <1000 hours, >1000 and < 3000 hours >3000 person-hours</td>
<td>Identification of affected system parts and more detailed picture of associated complexity.</td>
</tr>
<tr>
<td>Alt3: A point estimate (for example 500 person-hours) with 80% accuracy.</td>
<td>List of possible solutions are defined allowing to choose the most suitable solution.</td>
</tr>
</tbody>
</table>

Action 1:
Decide appropriate level of detail & Accuracy of each ADM component

Action 2:
Estimate ADM component development effort for a requirement

Action 3:
Decide if selected level of detail & accuracy is feasible

Needed Effort

\[
\text{ADM development effort} \times \text{Requirements Volume}
\]

Maximum allowed effort

(Max-Effort)

If not feasible

Consider:
1) Limiting Requirements Volume
2) Lowering demands on appropriate level of detail
3) Finding a cheaper way to obtain the same information
4) Increasing Maximum allowed effort that can be spent on pre-project activities
5) Decreasing number of decision points
Initiation and usage of NORM

- **How and when?**
 - How many and what kind of resources should be involved to initiate and run NORM?
 - How often NORM steps should be executed?
 - What are long-term benefits of NORM?

- **Long-term benefits**
 - Continues improvement
 - Identification of bottlenecks
 - Allows adjustment and alignment between applied process and the needs of decision makers
Discussion and future work

• Current status
 – Initial feedback from the industry is positive, however further tests are needed

• Open questions
 – Is it feasible to provide a generic estimate of the ADM component development effort?
 – How to make this process more dynamic: specifying ADM for a specific requirements rather than general for requirements within a product?

• Ongoing & Future work
 – Static and dynamic validation of the model in industry